
Abstract
This paper describes the use of the Virtual Reality Modeling Lan-
guage (VRML) in the VIM - Visual Interface to Manufacturing
system. The VIM prototype demonstrates the technical feasibility
of using a variety of interface techniques for data access. VIM is
Web based and contains data for the manufacture of a miter saw.
Access to manufacturing data is possible via 2D diagrams, and 3D
representations (via VRML) of the saw and manufacturing work-
stations.

CR Categories and Subject Descriptors: H.5.1 [Information
Interfaces and Presentation] Hypertext navigation and maps; I.3.2
[Computer Graphics] Graphics Systems - Distributed/network
graphics; I.3.6 [Computer Graphics] Methodology and Techniques
- Interaction techniques

Additional K eywords and Phrases: virtual environments, user
interfaces, data access, manufacturing environment.

1 INTRODUCTION
Manufacturing data comes in a wide variety of forms. Often infor-
mation exists only on paper. Illustrated part diagrams and process
control sheets are used by process engineers and assembly person-
nel to perform their tasks. Ideally one would like to be able to ask
questions of a physical object. An idealized interface, currently not
practical, would be to physically hold a real motor, for example,
and press on the copper winding or steel housing and have the
computer magically understand what one is pressing. A diagram-
matic 3D view of the same motor starts to move us, just a little,
towards such an idealized interface.

*National Institute of Standards and Technology,
Bldg. 220 Rm. A216, Gaithersburg MD 20899
email: sressler@nist.gov qwang@nist.gov

The type of people we want to use these interfaces are not
highly trained computer scientists, rather the users can consist of
shop floor assembly line workers without a particularly high level
of technical education. Low skill workers should be able to use the
3D interface being prototyped in this system. This hypothesis is as
yet unproven. Manufacturing and Process engineers however
should have no trouble as the interface is contained within the con-
text of a familiar Web browser.

The VRML object acts as the interface to the database. Que-
ries are effectively hard coded as URL requests. For example, the
fact that the guard part of a miter saw, is part 56, is wired into the
VRML representation. The data associated with part 56 is stored in
a relational database. The associations between the product (saw)
and process (workstation) as well as the specific operations which
must be accomplished at any workstation, and quality control
activities are stored in the database.

2 BACKGROUND
VIM is a prototype Web based system for the access of manufac-
turing data. The initial test data is from Black & Decker. The data
consists of product data such as part numbers, diagrams and
descriptions as well as process information. The process informa-
tion consists of task descriptions for each of over 20 workstation.
A workstation is a physical place along an assembly line where a
person performs the required tasks. Parts go in one end of the
assembly line and completed miter saws come off the end of the
line.

One of our goals was to create an intuitive interface through
which a naive user can browse for information about both the
products and process. Figure 1 illustrates the users entry point to
the system. We wanted to be able to answer questions such as
“what workstations require part X?” or “what part is supposed to
be on the table in workstation Y?”. Most important we wanted to
ask these questions in a visual way.

The product and process data was given to us on paper not in
any digital form. The Production & PDM Applications project in
MEL provided most of the data. Diagrams were scanned and the
assembly line and miter saw itself were constructed by hand using
the CAD capabilities of Deneb’s QUEST [7] software. In order to
more easily move the geometry from QUEST to VRML, we wrote
a converter [21] in an earlier phase of the project.

Using VRML to Access

Manufacturing Data

Sandy Ressler* Qiming Wang Scott Bodarky
Charles Sheppard Gregory Seidman

Information Technology Laboratory
National Institute of Standards and Technology

3 RELATED WORK
While VRML is new, much of the component technologies such as
hypertext, multimedia, and computer graphics have been around
for quite some time. A good survey of these technologies and how
they can be used in a manufacturing environment is presented by
Leung, Leung and Hill [11]. The use of advanced user interfaces
for training applications specific to manufacturing issues is cov-
ered in Bengu’s examination oriented more towards courseware
types of systems [5]. Some of the practicalities of virtual reality
and computer graphics as applied to engineering tasks is addressed
in Smith, Grimes and Plant’s paper [18]. Closely related to our
work, a paper by Andrews and Pichler [1], describes the use of 3D
models as full-fledged documents.

VRML is rapidly gaining acceptance as a mechanism to visu-
alize geometric representations of a variety of manufacturing
related entities. One of the earliest and most effective demonstra-
tions of VRML for an assembly process was the “Computer Desk”

site. In this site a user could view in 3D how the pieces of a desk
were supposed to be assembled [17]. One significant limitation
was the inability to view the pieces of interest in the context of the
rest of a completed assembly. Some other VRML sites specific to
manufacturing, ship building and process plant industries also exist
on the Web [9, 8].

A key difference between VIM and a typical visualization
system such as AVS [4] or Data Explorer [10], is that VIM is pri-
marily intended to enable the user to query for data through the
visualization. The visualization is the interface to data. Early pre-
VRML work [15] explored the use of 3D environments with Web
browsers and the current project extends both the Web and graphi-
cal interactions.

Figure 1. VIM Home page

4 INTEGRATION ARCHITECTURE
The overall architecture, illustrated in Figure 2, is of a typical

Web server/client system. A CGI program, the Python script, syn-
thesizes database results and other information into Web pages.

A typical “query” would function as follows:
The user rotates the VRML saw into the desired position and

clicks on the particular requested part. The URL contains the call
to the Python query script and the part number which is used as
data in the C Interface functions. The database is queried for infor-
mation via the C Oracle interface functions and appropriate data-
base tables are returned. The tables are placed into a memory, via a

structure, and a C/Python function turns the data into a form inter-
pretable by Python. The Python scripts examine the data and syn-
thesize the HTML page which is returned to the user.

In addition to using Oracle as the main repository of informa-
tion associated with parts, process and quality items the UNIX file
system was also a media repository. The Web server on which the
Python scripts run is also the location for several hundred different
files containing a wide variety of multimedia information associ-
ated with the parts or workstations. These include digital audio of
spoken quality assurance instructions, digital video sequences of
workstation operations, QuickTime VR visualizations of some
parts, GIF diagrams of the parts, GIF photographs, and Deneb
QUEST simulation parameters. The Python scripts display iconic
links to these data if they are present on the file system. Figure 3
illustrates these iconic links.

5 WEB GENERATION AND DATABASE
Any Web-based system which interacts a repeatedly with a

database must have at least some portion of the Web page gener-
ated automatically. In our case we decided to use an interpreted
language, Python [19,14] to interpret query results and examine
the file system to dynamically generate the resulting Web pages.
All of the Web pages containing information for specific parts and
workstation were automatically generated, however the introduc-
tion and 2D image map page were composed by hand.

VIM
web browser (client)

Web
Server

Oracle

(relational
data base)

UNIX

file system
media types

server computer

Python

C Interface
function SQL

HTML
CGI

HTTP

HTML

Figure 2. System Architecture

Figure 3. Icons identifying media types present for particular data page.

An Oracle [13] relational database is used to store the part
and workstation information. This included a textual description of
the part, the complete part number, operations to be performed at
the workstation and so on. The interface between VIM and Oracle
is implemented using C code [12] which is wrapped in a Python
“module”. The actual SQL query to Oracle is accomplished using
the C functions provided by the C Oracle API. The tables returned
by the query are placed into a C structure which are interpreted by
the Python-C code which is in turn called by the Python CGI
script. Figure 4 illustrates the Web page constructed by the script.

6 CREATING AND USING VRML
The creation of the miter saw and workstations was accomplished
in a two step fashion. First, the objects and workstations were
modeled using Deneb’s Quest simulation system and the CAD
portion of the system. QUEST is a high-end graphics oriented fac-
tory simulation system. A custom translator to convert Deneb
geometry into VRML was created, because none existed at the
time. This translator completely converts Deneb part and worksta-
tion geometry into VRML. Kinematic and simulation information
are not converted and are a future task.

There are two ways to use the VRML models. One for query-
ing the database called “navigation” and the second for a type of
visualization called “manipulation.” In order to actually use the
VRML models both for querying and visualization VRML manip-
ulation programs were required. For example we want to visualize
a particular part rendered solid with the rest of the saw rendered in

wireframe. Figure 5 illustrates this type of visualization. This is
useful when, a user is viewing the database output for a particular
part and prefers to view a 3D model of the saw highlighting that
part.

Figure 5. Single part rendered solid in context of wireframe saw.

.

Figure 4. Workstation report generated

.from Python script.

We developed a CGI filter program which takes as an argu-
ment a specification for which pieces of the saw should be dis-
played as wireframe and which displayed with solid rendering.
The URL embedded in the part information page has this parame-
ter, which is obtained from the database. An additional visualiza-
tion aid was also developed to allow the user to turn any part of the
saw solid or wireframe. Using the same VRML file for both visual-
ization and database selection, however, introduced a problem. The
user had no way of controlling whether the part being selected was
for a query or for a visualization manipulation. This forced us into
the unsatisfying position of creating “modes.” A more desirable
user interaction, for example using other mouse buttons is antici-
pated in the future.Mode selection was accomplished by placing a
small colored cube in the lower right corner of the saw where the
color of the cube tells the user the current mode. A green cube
means the system is in query mode and a yellow cube indicates
that the system is in manipulation mode. Figure 6 illustrates a
VRML selection with the resulting part data report. The two
VRML modes, toggling part rendering, and part navigation were
implemented using themanip filter described below.

In addition to part representations, we created VRML worlds
of the assembly workstations. The assembly workstations were
modeled using Deneb’s QUEST software and translated into
VRML via a custom translator. The assembly workstation worlds,
illustrated in Figure 7, have links to parts used at the workstation
again making these worlds front-ends to database information.
One, as yet unimplemented, feature which addresses some of the
mode switching problems discussed earlier, is to use the VRML
level-of-detail (LOD) feature to enable part and equipment selec-
tions and visualizations dependent on the viewer’s distance from
equipment.

Figure 6. VRML selection window and part report.

7 MANIPULATING VRML FILES
The manip program was created to allow flexible viewing of

individual parts of a larger assembly. Manip is a filter, which takes
as input a VRML file and generates a modified VRML file. The
modifications are based on parameters passed to manip when it is
called. Manip is called as a CGI program and the parameters are
passed as CGI parameters. Manip produces VRML files which
allow the user to perform two functions. First, it allows the user to
selects portions of the VRML file to toggle between wireframe and
shaded rendering (manipulation mode), and second, it allow the
user to toggle between manipulation and navigation mode. For
example, a URL instructing the Web server to execute manip
might look like:

http://www.my.server/cgi-bin/manip/worlds/
saw.wrl?+1113333111

The arguments are the VRML file “/worlds/saw.wrl” and the
“+1113333111”. The first argument is simply the VRML file. The
second argument can begin with either a “+” or a “-” indicating
that manip should produce a “manipulation” or “navigation”
VRML file.

Manip functions by interpreting special markup codes
embedded in a VRML1.0 file. Manip performs two independent
operations: First, it tells the VRML browser to render selected
parts either wireframe or solid. Second, it hides the URLs used for
“navigation” mode. These codes are hidden from VRML interpret-
ers by their placement in a VRML comment, that is, after a # char-
acter.

A section of the VRML file is composed of the parts that can
be toggled. Each part is surrounded by either aSeparator node
or a WWWAnchor node, and there should be noWWWAnchor
nodes within the part. To use aSeparator node,DEF theSep-
arator astrans_here , e.g.

Separator {
#some VRML here
 DEF trans_here Separator {
 #VRML part
 }
}

Using aWWWAnchor node is somewhat more complicated,
but it should also have aDEF trans_here , like this:

Figure 7. Assembly workstation in VRML, modeled then
translated from Deneb’s QUEST.

Separator {
#some VRML here
DEF trans_here WWWAnchor {
 name "http://here.there.com/"
#^%} Separator {
 #VRML part
 }
}

Manip also toggles statements in the selected parts from
“IndexedFaceSet” to “IndexedLineSet” to actually accomplish the
rendering switch between wireframe and solid. To accomplish
“manipulation / navigation” mode switching the URLs associated
for “navigation” are dissociated from the geometry by manipulat-
ing the location of Separators. The separators are identified via a
“#^%” character sequence. For additional details on manip see the
cited URL [16].

8 MULTIMEDIA / INTEGRATION ISSUES
Multiple media types gives an interface a great deal of flexibility,
but it introduces problems unique to each media type. Most prob-
lematic of all is the support or lack thereof of a media type during
runtime on one or another particular platform. For example the
QuickTime VR [3] views of some of the parts are only usable on
PCs and Macintoshs. Since most of our work was accomplished on
UNIX workstations (SGIs and Suns), the QTVR views did not get
much visibility even though they are extremely effective at illus-
trating real parts and environments. The digital audio sequences
had to be converted into.au type files which are supported on all
the platforms. The digital video (QuickTime) [2] sequences could
only be played back on platforms that had all the proper video
codecs installed and were capable of sound. QuickTime techni-
cally was supported on all of our platforms although some had
severe configuration problems. The VRML browser for our devel-
opment system was WebSpace on an SGI. Other browsers should
work just fine.

Additional functionality was created by turning the QUEST
simulation package into a Web helper application. This was
accomplished by creating QUEST Batch Control Language (BCL)
scripts which are interpreted by QUEST. A new MIME [6] type
was specified and the Web browser was configured to use that
MIME type for files with a.bcl extension. While this was a solu-
tion for the machines which were licensed to run QUEST, again,
this proved to be of no value for other hosts. Lack of simulation
capability provides more impetus for the move towards VRML 2.0
versions of the system.

The bottom line is the use of multimedia elements to enhance
the user interface can be effective but requires a great deal of atten-
tion to the system configuration. In addition, media types such as
digital video require a great deal of storage and are unrealistic
without video streaming capabilities for low bandwidth (modem)
users. These are issues beyond the scope of our project and left to
others.

9 CONCLUSIONS AND FUTURE WORK
Although focusing on the VRML interaction this prototype is also
a systems integration project. The combination of the infrastruc-
ture provided by the Web and the visualization capabilities of

VRML offer a unique opportunity to create intuitive 3D front ends
to data. The advent of support for behaviors in VRML2 [20] opens
the opportunity to move the kinematic and simulation portions of
our QUEST simulation into native VRML2. This offers the clear
advantage of much wider use, however the production of a com-
plete simulation facility inside VRML2 is a non-trivial task and as
yet unknown task.

We intend to move the kinematic and simulation capabilities
into VRML2 not to produce a replacement for QUEST, but rather
to complement its capabilities. QUEST should be viewed as a
potential VRML2 authoring system, provided the proper transla-
tors and VRML enhancements are created.

10 ACKNOWLEDGEMENTS
We would like to thank the many people at Black & Decker,

particularly Don Elson and Mike Weaver. Thanks also to the
Chuck McLean, Swee Leong, Simon Frechette, and Ram Sriram of
the Manufacturing Systems Integration Division at NIST for sup-
plying data, photographs and video. Thanks also to Christine
Piatko and Sharon Laskowski for their thoughtful reviews of this
paper. Finally thanks to the SIMA project management for their
continued support.

References
[1] K. Andrews and M.Pichler. Hooking up 3-space: three-dimen-

sional models as fully-fledged hypermedia documents. InMul-
timedia, Hypermedia, and Virtual Reality. Models, Systems,
and Applications. First International Conference, MHVR ’94,
pages 28–44, 1994.

[2] Apple Inc. QuickTime.http://quicktime.apple.com, 1996.

[3] Apple Inc. QuickTime VR.http://qtvr.quicktime.apple.com,
1996.

[4] AVS. Advanced visual systems.http://www.avs.com, 1996.

[5] G. Bengu. Interactive multimedia courseware on manufactur-
ing processes and systems.International Journal of Engineer-
ing Education, 11(1):46–57, 1995.

[6] Nathaniel Borenstein. Internet multimedia mail with mime:
Emerging standards for interoperability. InULPAA ’92, Van-
couver, 1992.

[7] Deneb Robotics Inc., Auburn, MI.QUEST User Manuals V2.1,
1995.

[8] GCRMTC. Gulf coast region maritime technology center.ht-
tp://www.luorc.edu/sbd-gcrmtc/, 1996.

[9] IAI. Information assets, inc. engineering vrml site.http://
www.infoassets.com/vrml/, 1996.

[10] IBM. IBM visualization data explorer.http://eagle.al-
maden.ibm.com/dx/, 1996.

[11] RuthF Leung, HorrisC Leung, and JohnF Hill. Multimedia/
hypermedia in cim: state-of-the-art review and research impli-
cations (part i and ii).Computer Integrated Manufacturing Sys-
tems, 8(4):255–268, 1996.

[12] Oracle Corporation, Redwood City, CA.Programmer’s Guide
to the Oracle Pro*C Precompiler, Release 2.0, 1993.

[13] Oracle Corporation, Redwood City, CA.Oracle 7 Manuals,
1995.

[14] Python. Python language home page.http://www.python.org/,
1996.

[15] Sandy Ressler. Approaches using virtual environments with
mosaic. InThe Second International WWW Conference ’94
Mosaic and the Web, volume 2, pages 853–860, 1994.

[16] Gregory Seidman. Manip VRML manipulator.http://
www.nist.gov/itl/div878/ovrt/projects/vrml/manip.html, 1996.

[17] Silicon Graphics Inc. Silicon Depot: CT0405 computer work
station desk.http://webspace.sgi.com/Repository/SGI-Depot/
index.html, 1995.

[18] J.R. Smith, R.V. Grimes, and T.A. Plant. Engineering applica-
tions of virtual reality. InProceedings SPIE - International So-
ciety for Optical Engineering, volume 2653, pages 332–339,
1996.

[19] Guido van Rossum and Jelke deBoer. Linking a stub generator
(ail) to a prototyping language (python). InSpring 1991 EurO-
pen Conference Proceedings (May 20-24), Tromso, Norway,
1991.

[20] VRML. VRML 2.0 Specification ISO/IEC CD 14772, 1996.

[21] Qiming Wang. Deneb2VRML Translator.http://www.nist.gov/
itl/div878/ovrt/projects/vrml/deneb2vrml.html, 1996.

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 RELATED WORK
	4 INTEGRATION ARCHITECTURE
	5 WEB GENERATION AND DATABASE
	6 CREATING AND USING VRML
	7 MANIPULATING VRML FILES
	8 MULTIMEDIA / INTEGRATION ISSUES
	9 CONCLUSIONS AND FUTURE WORK
	10 ACKNOWLEDGEMENTS
	References

